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A new formalism is proposed for incorporating solvent effects into the 
quantum mechanical description of molecular electronic states. In contrast to 
existing methods,  it does not lead to a non-linear effective hamiltonian, while 
both the solvent/solvent  and the solute/solvent interactions are treated 
self-consistently. It also accounts more accurately for the solute's electrical 
field than the usual dipole approximation.  Although formally treated on the 
Har t r ee -Fock  level, the method incorporates dispersion interactions between 
solute and solvent. 
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1. Introduction 

Most quantum mechanical t reatments of molecular propert ies and interactions 
refer to vacuum states. In particular for the description of events taking place in 
solution or in a macro-molecular  environment,  this is a serious drawback which 
makes  comparison between theoretical and experimental  results often hard, if not 
impossible. Therefore,  it is not surprising that over the past decade or so, an 
increasing number  of studies have been dedicated to the representat ion of 
environmental  effects on the electronic structure of molecules and molecular 
complexes [1-20]. 

So far, most  of the studies on solvent effects are based on Onsager 's  [21] reaction 
field model, in which the solute molecules are described as point-dipoles, situated 
in cavities within a dielectric continuum or even immersed in such a medium [19]. 
This simple model,  although very useful for discussing trends, poses several 
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problems if more accurate descriptions of the solute are desired. First, the 
dimensions of a cavity are hard to define. In fact, tractable formulations are only 
obtained for spherical cavities, which are not very realistic for molecules of 
general shape. Second, bulk dielectric constants, whether obtained from theory or 
experiment, are most likely not adequate in representing the solute's direct 
environment. Finally, the use of the dipole moment only for calculating the 
inductive effects of a molecular charge distribution, may lead to serious errors in 
cases where the charges are separated over large distances. 

Three papers should be commented upon explicitly. First, Kleiner and Elder [9], 
in their work on environmental effects on the relative stability of the purine 
tautomers, gave a formal analysis of the quantum mechanical, self-consistent 
treatment of a solute/solvent system within the frame work of McWeeny's theory 
for separable groups [22]. In their ab initio calculations they used - for practical 
reasons-  a "polarizable dipole in cavity" model. Second, Tapia and Goscinski 
[14] presented a formalism, in which also the solute's dipole moment is used to 
generate a reaction field. They do not use a cavity, however, but introduce a 
response tensor G, related to the solvent's permittivity, which may be calculated 
from a microscopic representation of the solute's environment. Although these 
authors stress the necessity of obtaining the solute's charge distribution in the 
reaction field in a self-consistent way, they do not treat the induced effects in the 
solvent self-consistently. In the numerical illustrations of their method [14-18], 
using the Hartree-Fock approximation within the CNDO/2 scheme, G was 
merely used as a parameter. Nevertheless, their results show the importance of 
environmental effects, in particular in charge transfer processes. Finally, Warshel 
and Levitt [10], in their work on lysozyme, presented a "total energy" method in 
which a self-consistent solution was obtained for the complete enzyme/substrate 
complex, using a semi-empirical quantum mechanical method for part of the 
system, and a classical empirical energy expression for the remaining part. In the 
electrostatical part of their energy expression, partial charges on the atoms occur 
in addition to polarizabilities in the classical regions of the system. The quantum 
mechanical part is treated in the field produced by the point charges and induced 
dipoles. The resulting charge distribution, also represented in terms of atomic 
partical charges, is (re-)introduced in the total energy expression, and this process 
is repeated until self-consistency. Although the method looks nice, and has been 
extended and adapted in various papers by Warshel [20], the computational 
schemes depend on empirical parameters to an extent, that the theoretical value 
of the results is doubtful. Moreover, representing the total molecular charge 
distribution by atomic partial charges, again, may lead to errors. All the methods 
reviewed here, have in common that the reaction field is introduced after 
obtaining the molecular charge distribution within some quantum mechanical 
me thod-  mainly the Hartree-Fock approximation- thus leading to non-linear 
equations in which the electrons "feel" the reaction field in a completely classical 
way. 

In this paper we present a general derivation of these methods, as well as a 
formalism which incorporates the reaction field directly into the molecular 
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hamiltonian. The latter does not lead to any non-linearity in the equations, and is 
also more elegant from a computational point of view. 

2. General Theory 

2.1. The Group Function Approximation 

The wave function describing any number of weakly interacting groups of 
electrons is - in the limit of zero interaction - given by [22] 

~b ( 1 . . .  N)  = Ms~qbo(1 �9 �9 �9 No)Cbs(No + 1 . . . . .  No  + Ns) �9 �9 �9 (1) 

where ~ o  is the anti-symmetric wave function for the No electrons in group Q, 
etc. The factor M is a normalizing constant, s )  the inter group anti symmetrizer. If 
the group functions are strongly orthogonal, fairly simple energy expressions can 
be derived: 

E = Y. H~ + ~ os {J (qq, ss)-K~ ss)} 
Q Q<S 

with 

i=1 i#j 

H~ = (~olHQl~o) 

jOS(qq, ss) = f 1P~ (qqlrl)P~ (sslr2) dr2 
El2 

K~ ss)= f 1P~ (qq Ir~r2)P s (ss Ir2rl) dr1 dr2 
3' F12 

(2) 

(3a) 

(3b) 

(3c) 

(3d) 

with P~ (qq) the one-particle density function for the group Q electrons, etc. 
Leaving the zeroth order approximation, a variation condition for (2) can be 
derived for each group separately in the presence of other groups: 

Eeo o =H(qq) + E [jOS(qq, ss) OS - K  (qq, ss)] (4) 
Q~S 

and the wave function and energy can be optimized considering only one group at 
a time. This is a Har t ree-Fock  like description, in which each group experiences 
only the averaged charge distributions of the other groups. It can be shown [22] 
that if the resulting equations are solved self-consistently, no further polarization 
effects, i.e. changes in the one electron charge distributions, can be obtained, and 
further improvements have to do with correlation effects. 

Even if the strong orthogonality condition, which necessitates the evaluation of all 
two-electron integrals, is relaxed [23], the group function approach is out of 
practical bounds for large clusters of molecules, and more drastic approximations 
are needed. Since we are mainly interested in the electronic structure of a single 
solute molecule surrounded by a cluster of apolar solvent molecules, the actual 
state of which is considered less important, we absorb the zero-order  interactions 
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i.e. the total energy of the cluster without the solute molecule, in the energy scale, 
and write for the self-consistent total electronic energy: 

If we describe the changes in the solvent's charge distribution by means of an 
effective polarizability, accounting for the self-consistency, we may write (5) in the 
Onsager form: 

E ~ = H ~ + E RF + E POL. (6) 

Where E RF is the interaction energy and E P~ the work done in changing the 
solvent's charge distribution�9 As will be shown in the next section, the con- 
struction of an effectively self-consistent solvent polarizability poses no severe 
problems�9 For the solute/solvent interaction two possible approaches will be 
discussed in following sections. 

2.2. Solvent Polarizability 

Like Warshel and Levitt [10], let us represent the solute's environment by a 
collection of points with position vectors p and dipole polarizabilities oto. Any 
electrical field will induce dipoles in this system, and, assuming linear response, 
the actual moment in a point p will be given by 

m v = otv[f p + q~v f(mq, p)]. (7) 

Where fp is the original field in p and f(m~, p) is the contribution to the field due to 
the induced dipole in q. For the collection of points {p}, a system of linear 
equations in {m.} is obtained, the self-consistent solution of which is given by 

m = [1 - A'B]-:A'f  

with 

2 �9 

\rap/ 

)('1 t 0 f=__ ~ 

o~. \f~ / 
and B is the interaction tensor between the dipoles: 

B =  

with 

/ (p -  q)(p- q) t'~ 1 
Bg= ( 1 -  3 

)lp-ql k 

(8) 

(8a) 

(8b) 

(8c) 
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This solution only depends on the choice of points p and the polarizabilities OLp. 
Hence,  for a self-consistent, effective polarizability we have 

A = [1 - A 'B]-aA ' (9) 

and any interaction of a (molecular) charge distribution with this model solvent 
may be assumed to be self-consistent without any further iterations in the solvent 
part of the system. For later reference it is useful to note that we may write 

A = LL~ (9a) 

where L is a lower triangle matrix. Of course, one must make sure that the inverse 
matrix in (9) exists, and that it has a physical meaning. A discussion of these points 
has to wait until numerical results are available, and is beyond the scope of this 
paper. 

At any time, the total energy of polarization is given by 

E P O L  1 w * -1  
= 2 2.. m p O L p  m p  (10) 

p 

which for isotropic polarizabilities takes the probably more familiar form [24] 

E p ~  = ~, Impl2 (11) 
p 20~p 

For a self-consistent solution it can be shown [25] that E e~ is related to the total 
interaction energy (E RF in (6)) with the system (S) generating the inductive field 
a s :  

E P~ = - � 89  RF. (12) 

2.3. The Average Reaction Field Method 

Starting from Eq. (5), and neglecting the exchange term, the solute/solvent 
interaction can be described in terms of the electrical field of the solute's charge 
distribution P~.  Let  p (r) be the electronic charge distribution of Q, and let 

~p p - r  . p - r ~  
- fp=-~.Zc ----73 (13) 

I p - r l  3' c Ip -ro l  

define the electronic and nuclear contributions, respectively, to the field operator 
relative to p, then we have: 

,/ ,  = ( f )v  + Pp = ~ drp(r)fp + Pp. (14) 

The collection of dipoles induced by this field is, according to (9) given by 

m = A{(f)  + f '} .  (15)  

A dipole in q contributes to the potential in s, in the region of p, an amount: 

AvRF(q, S) =m*, s- -q  
~ls_ q13 - -m*q,2q (16a) 
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from which we arrive at the reaction field operator:  

/~RV= m?/)=  {<f> + f"}'~A/). (16b) 

The effect of the reaction field on the electronic energy is 

Ee~ v = (~QIHRF/~o) = -- {(f> + f"}~'Af<f> (17) 

and the effect on the total interaction energy is 

E Re = - {(f> + f"}?A{(f} + f"}. 

For the total energy of the solute/solvent system we have to imply (12), and find 
for the electronic contribution: 

Eo% s = <OoIH~ - �89 + (f)?Af". (18) 

Hence,  this energy cannot directly be obtained as the expectation value of the 
electronic operator  

~ =  ~ o  + y~RV. (19) 

In order to arrive at (18) the expectation value of ~ u v  has to be evaluated 
separately, after which it is to be reduced so as to account for the polarization 
energy. Moreover,  the wave function ~ o  has to be obtained from a non-linear 
equation 

+ = E ( . o ) a , ~  (20) 

which poses several formal problems discussed by Sanhueza et al. [26]. 

2.4. The Direct Method 

In order to avoid the problems mentioned in the foregoing section we introduce 
the effect of the solvent directly into the solute's hamiltonian, prior to any 
reference to the charge distribution or the wave function: 

~ f  = a~aQ -- �89 i,~j ?/+ A?/+  ~ fn+A?/ (21) 

where Z'i etc., defined as in (13), now refer to an electronic coordinate rather than 
to an arbitrary point in space. Using the decomposition of A (cf. Eq. (9a)), we have 
more simply: 

O~aSf~_ ~oQ__ �89 ~i gn'~Ti (22) 

The use of the factor one half in this expression is warranted because of the 
effective self-consistency of the solvent implied in A. The interpretation of the 
additional terms in the hamiltonian (22) may be two-fold. Either one considers 
them as effective forms of the ff  and fg operators in the formal group function 
treatment,  or one simply takes them as introducing an effective dielectric constant 
reducing all coulombic interactions. In either case, the solvent reacts instan- 
taneously to the solute's electrons, and this is bound to produce differences with 
the preceding average field method. 
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If we solve ~Q with the hamiltonian (22) on the Hartree-Fock level, we find in 
terms of an orthonormal set of doubly occupied MOs: 

Eel = (dPo]HO](/PQ)--2 (ilgt(1)g(1)[i) 
i 

+2g"~ Y~ (ilg(1)li)-Y. 2(ilg(1)1i)+ (jig(i)[/) 
i id 

+ E ( i[g(1)[/)~ < ilg(1)lJ> (23) 
t,1 

where i,/are orbital indices. 

First, we note that, indeed, the total electronic energy of the system is obtained as 
the expectation value of the corresponding operator, and no special arrangements 
are needed in its evaluation. Also, there is no non-linearity problem involved in 
finding qb o. Writing (18) in the same form as (23) we have: 

E'I  = (~o lH~  28"~ 2 (i]g(1)]i)-E 2(ilg(1)[i)?qlg(1)]]) (24) 
i id 

which, at first sight, looks rather different from Eq. (23). In the difference 

AE = EeI-E'I  = - E  (i[g(1)'~g(1)li) +• (ilg(1)[//f(i[g(1)[/) (25) 
i i,./ 

we see two terms, the first of which contains the stabilization of each electron in its 
own reaction field, while the second comes from imposing the Pauli principle on 
4) o. After applying the closure relation to the first term: 

nor 
S~(i]g(1)+g(1)li)= - ~ ~ (g]g(1)]i)t(glg(1)]i) (26) 
i i=1  K = I  

we have: 

nocc 

A E  = -  E ~ (Klg(1)li)~(KIg(a)li>. (27) 
i=1  K = noec+ 1 

Now, the operators ~ are associated with the polarizability of the solvent mole- 
cules, and for each of these we may write: 

, ~ =  E I<~ (28) 
~ 0  E 0 - E v  

i.e. a sum of matrix elements connecting singly excited states. On combining the 
two forms (27) and (28), we obtain an expression coupling single excitations of the 
solute molecule to single excitations in the solvent, and, hence, Eq. (27) is a 
representation of the second order terms arising from applying perturbation 
theory within the self-consistent group function formalism [22]. This means, that 
our description, if Eq. (23) is obtained self-consistently, contains dispersion 
contributions up to third order, a result obtained in a much more direct way than 
that outlined by Tapia [27]. Moreover, the direct method, in comparison with the 
average field approach, leads to much less computational difficulties, as will be 
pointed out in the next section. 
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3. Practical Considerations 

In this section we develop the formalism of the foregoing section for use in actual 
computations in the LCAO approximation. For simplicity, the discussion is 
restricted to closed shell Hartree-Fock wave functions. 

In terms of a basis set {X} of, e.g. atomic orbitals, the molecular electronic charge 
distribution is represented by a density matrix 2R [28], and the total charge 
distribution is, in atomic units: 

p (r) = - 2 x ? ( r ) R x ( r )  + 2 Z c 6  ( r -  re). (29) 
c 

The total energy (23) in terms of the basis {X} is: 

E T  ---- ~.. 2Ri f ih  U -- �89 -t- g"]'g/i} + 2  (2Ri iRgt  - RigRiz){( i f l  k l )  - g;ggl}  
t l  ijkl 

+ Z Z c Z d f c d  1 1 n• n - s g  ~-g (30) 
c<d 

with h,-j the usual one-electron matrix elements and ( i j lk l )  the two-electron 
integrals, and the last term representing the nuclear-nuclear interactions. The 
form of (30) points directly to the way in which the solvent effect can be 
incorporated into an actual calculation. Once the additional interaction matrix 
elements have been evaluated, they are simply combined with the corresponding 
terms in the standard Hartree-Fock energy expression, and there is no need for 
special procedures on the SCF level. However, the evaluation of these matrix 
elements may present some problems. If P is the number of points representing 
the solvent, we have 

P 

* =f~LL?fkt = 2 f*p.,Apqfqk,. (31) g0gkl 
p,q=l 

The implication is, that for every point in the solvent a m a t r i x  has to be 
constructed for each cartesian direction: 

p - r  

and the construction of the matrix elements g~gk~ involves, since A is a 3P x 3P 
matrix, the evaluation, storage and retrieval of 3P(3P +�89 (n + 1)) quantities (n 
being the basis size), a number which, depending on P, can easily be prohibitive. 
Therefore, we introduce an approximation which simplifies the integrals (32), 
reduces their number, and enables us to avoid reference to the individual solvent 
points during the quantum mechanical parts of the calculations. 

Expanding the local field operator in a Taylor series around a - f o r  the moment 
arbitrary - origin a, we have: 

p - r  ~ v ~ - B ~ ( r - a )  (33) 
I p - r l  3 
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with 

a p - a  
v - - -  (33a) I p - a [  3 

and Bp defined in (8c). Relative to this origin a matrix element of tp is 

a a a 
f" = (Xi]v~ + B~,a- B~,rlxj) = (vp + Bpa)Sij - Bprij (34) P i i  

which contains only overlap and dipole moment  integrals. Here,  we note, that 
taking one and the same origin for all charge distributions XiXj would lead to a 
reaction field operator  (cf. Eq. (20)) with matrix elements 

~RiiF = -- • ( f )~Apq (vqSii - nqr i i )  (35)  
P,q 

which, apart from the monopole term and the self consistency of the solvent 
implied in A, would give us back Tapia and Goscinski's [14] approach, with 
BtAB instead of their tensor G. 

Apart  from the fact that we do not want to use the operator  in this form, we want a 
better  approximation to the field operators, and therefore we take different 
expansion centres for different charge distributions. Of course, by taking a new 
centre for each charge distribution, we would be back at the problem of having too 
many integrals. Hence,  we choose the nuclear positions as expansion centres. 
These are at least good for the one-centre distributions, while for two-centre 
distributions one may either take the nearest nuclear centre or interpolate, since it 
may be assumed that the reaction field varies rather smoothly within the dimen- 
sions of the solute molecule. 

After some amount of algebra (see Appendix) we have: 

( g t g ) 6  = y a a s i  i - 2 o  taari i  + (rtl-~aar)i  i (36a) 

g~lgc = ~acSii -r/~ eac (go is the contribution of a single nucleus c to g~). 
(36b) 

t ab  "l" ba  ? ab  gilgkt = Si]'}/abSkl- S i j~(  rkl--ril8 Skz +rilO rkt (36c) 

and all terms may be obtained from the overlap and dipole moment  integrals, 
except the last term in Eq. (36a) which is related to the matrix elements of the 
quadrupole operator.  The greek symbols in Eq. (36) are simple constants, 
three-dimensional vectors and 3 x 3 matrices, independent of the basis. The upper 
indices indicate the expansion centre(s) to which they relate, where it is under- 
stood that "a" refers to "j" and "b" to "kl", the actual values of these 
parameters depend solely on the choice of solvent points, their polarizabilities and 
the geometry of the system, and they are obtained prior to the evaluation of the 
integrals. By incorporating the matrix elements g~gk~ directly into the cor- 
responding coulombic integrals, the additional storage requirements are very 
limited, while no change in procedure is needed in the SCF part. We note, that 
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implementation of the present approximations in the reaction field operator  
formalism (cf Eq. (35)) would lead to the necessity of keeping track of ]:our 
one-electron matrices per expansion centre, which, again, may lead rapidly to 
storage problems. Moreover,  in that formalism, quite drastic changes in the logic 
of the SCF procedures would be necessary. 

4. Discussion 

Starting from a formal quantum mechanical treatment of a complex system of 
weakly interacting molecules, we arrived at a quantum mechanical formulation of 
solvent effects on a single solute molecule, which is both tractable and consistent. 
Tractable, because the description of the solvent - represented by a collection of 
point polarizabilities - is reduced to a relatively small number of scalars, vectors 
and tensors, this number being only dependent  of the number of atoms in the 
solute. The computational effort involved in obtaining this effective represen- 
tation is - most likely - rather small, once a procedure is developed for manipu- 
lating large matrices. 

The consistency of the formalism is threefold. First, the field induced in the solvent 
is treated self-consistently. Apart  from being correct, this has the advantage that 
there is no need to evaluate the polarization energy separately. Second, the 
reaction field is introduced directly in the effective molecular hamiltonian, which 
leads to t h e -  normal - s i tua t ion  that the total energy is obtained as the expec- 
tation value of the total hamiltonian. This, in contrast, is not the case for the 
"averaged reaction field" approach like that of Tapia and Goscinski [14]. Third, 
since the solvent/solvent interactions are treated in an approximate way, 
considering only dipole/dipole interactions, it is reasonable to approximate also 
the field operators. Our method, however, is generous to the details of the solute's 
charge distribution - typical for a quantum mechanical description - by not simply 
relating the field to a dipole [14] or a collection of point charges [10]. 

Within the frame work of representing the solvent by point polarizabilities, our 
direct method accounts to a certain extent for dispersion effects, which are not 
present in the average field methods. As to the detailed information on structure 
and properties of the environment,  we assume that such information is, or may 
become, available, either from experiment or from computations. Structural 
parameters  may be obtained - in the latter c a s e -  from Monte Carlo or Molecular 
Dynamics simulations. Polarizabilities can be computed for individual solvent 
molecules placed in appropriate fields. 

Numerical testing of the method is in progress in this laboratory, and results as 
well as comparison with existing methods will be reported shortly. 
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Appendix 

According to (33) we have, relative to centre a: 

p - r  p - a  
]p_ r]3 ~ ]p_---~- B~( r - a )  

a a 

= v p -  B y ( r -  a) 

= w ~ -  B~r 

with 

(A.la)  

p - a  a 
Vp=lp_al3, wp -- v~,+ B~,a. (A.lb) 

Choosing centre a for basis orbital product (ij) and b for (kl) we obtain for a typical 
matrix element 

* = f~LL?fkt = ~ * a a b b fpi jApqfqkt  = ~ ( w p S i i  - B p r i i ) t  A p q ( w  qSkl - Bqrkz) g ~gk~ 
Pq Pq 

= X {S~jw~*A~ b a* Wq Skl  -- S q w p  A p q B q r k l  
Pq 

~ a t - -  b,'~ t a t  b 
-- r ij l i  p tlk pqW q~ kl + r i jB p A pqB  q r kl } 

= S i]yabSkl  --  Si jaafabrkt  -- r~jaabski  + r~il-~abrkl (A.2) 

with 

" ~ * *  nb (A.3) ~'~ab = ~ l~p ~pqJU, q. 

P,q 

(A.4) 

(A.5) 

(A.6) 

ab Y • w~TApqW~, Bah ~ ha*-- b -~" ~ l ~ p  ~ p q W q ,  

P,q P,q 

The nuclear-electron interaction terms contain: 

~ a a c ac 
g#gc = ~, ( w p S i / -  B p r i j ) ?  A p q v q  = Si lr  - r ~  ~ 

Pq 

with 

~ac at  c E ac at  c = B p  A p q v q .  2 w~ A~q vq, = E 
Pq Pq 

Finally, the nuclear/nuclear term in (30) reduces to a constant: 

V p  2 ~ p q V q .  
cd pq 
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